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Abstract. Thermodynamic quantities are calculated as a function of temperature by using Landau mean-field model for
the α–β transition in quartz. By expanding the Gibbs free energy in terms of the order parameter (Q) with the cubic term
(Q3), the temperature dependence of the relevant thermodynamic quantities are predicted using the heat capacity (CP),
which is fitted to the experimental data from the literature for the α–β transition in quartz. Our results indicate that the
Landau mean-field model is adequate to describe the first-order α–β transition in quartz.
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1. Introduction

Crystalline quartz exhibits a first-order transition from the
hexagonal β phase (high temperature) with the space group
D4

6 to the trigonal α phase (low temperature) with the space
group D4

3 at about 846 K.
The α–β transition including the incommensurate (INC)

phase (∼1.3 K) in quartz has been extensively studied in the
literature. Its thermal properties in particular, have been inves-
tigated by various experimental and theoretical techniques.
Measurements of the heat capacity CP exhibit a sharp peak
close to the INC phase [1–5]. Some elastic properties of quartz
close to the α–β transition have been studied [6–10]. The elas-
tic constants [6] have been related, as we have related the
resonant frequency shifts to the order parameter [11,12] and
to the elastic constants [13] near the α–β transition in quartz

Regarding the INC phase in quartz, spectroscopic studies
by differential scanning calorimetry (DSC) [1,2], elastic neu-
tron scattering [2,14] and Brillouin scattering [3] have been
reported. Also Raman and infrared [15], time resolved triple-
axis [16] and the electric field dependent neutron scattering
[17] experiments have been performed for the INC phase of
quartz. Theoretically, molecular dynamics calculations have
been carried out, in particular, on the temperature and pres-
sure dependence of volume near the α–β transition including
INC phase in quartz [18–21].

Mean-field theory can be employed to study various phys-
ical properties close to the α–INC–β transitions in quartz.
Following Landau, one can introduce an order parameter η

due to the orientation of SiO4 tetrahedra, which is zero in
the β-phase and which can take two opposite values in the α-
phase corresponding to Dauphiné twins [1]. In terms of η and

elastic deformations, the gradient interaction model of
Aslanian and Levanyuk [22] has been introduced. On the basis
of the experimental data, Landau mean-field model has been
studied previously [6,8,23,24]. Temperature dependence of
the fourth power of the average SiO4 tetrahedral tilt angle δ

was taken as the order parameter of the α–β transition in quartz
[25]. We have also studied recently the Landau phenomeno-
logical model to calculate the temperature dependence of the
tilt angle and susceptibility for the α–β transition in quartz
[26]. Very recently, we have applied the Landau phenomeno-
logical model as used for the α–β transition in quartz [8],
to the metal organic frameworks; in particular, magnetic and
thermal properties of chiral HyFe and HyMn [27].

The thermodynamic properties such as heat capacity (CP),
order parameter (Q), entropy (S) and susceptibility (χ) can be
studied as a function of temperature using the Landau mean-
field model and they can be compared with the experimental
data. Previously, by expanding the Gibbs (G) free energy in
terms of the even powers of the order parameter (Q) up to
the sixth order, some thermodynamic quantities have been
derived and the excess heat capacity (�CP) in particular was
calculated in comparison with the measurements for the first-
order α–β transition in quartz using the Landau theory [8].
Also by expanding G with the cubic term (Q3) the order
parameter (Q) was predicted and the strain variations were
calculated using the neutron diffraction data [8]. As we have
calculated the tilt angle (order parameter) and susceptibility
in the Landau mean-field model in our earlier study [26], in
the present study we calculate some thermodynamic quan-
tities by using the Landau mean-field model with the cubic
term (Q3) in the free energy expansion for the first-order α–β

transition in quartz. Thermodynamic quantities of interest are
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derived from the Gibbs free energy with the cubic term and
using the observed data for the excess heat capacity �CP [8],
their temperature dependences are calculated close to the α–β

transition in quartz.
Below in section 2 Landau mean-field model is introduced

with the thermodynamic quantities studied. Section 3 includes
our calculations and results. Discussion and conclusions are
given in sections 4 and 5, respectively.

2. Theory

Thermal properties of the α–β transition in quartz can be stud-
ied by the Landau phenomenological model. By expanding
the Gibbs free energy in terms of the order parameter Q of
the α phase including cubic term [8],

G = 1

2
a (T − Tc) Q

2 + 1

3
u |Q|3 + 1

4
bQ4 (1)

The α–β transition in quartz can be described with the odd
order term (cubic) appearing due to fluctuations [28], which
makes the α–β transition a first order. In equation (1), Tc is
the critical temperature with the constants a > 0, u < 0 and
b > 0. The order parameter Q in equation (1) defines the dis-
continuous variation of the thermodynamic quantities such
as thermal expansion, elastic constant, piezoelectric constant,
etc. (macroscopic level) with a typical hysteresis at the α–β

transition in quartz. It is associated with the large tempera-
ture variation of those quantities mostly proportional to Q2,
as also indicated previously [24]. Temperature dependence
of the fourth power of the average SiO4 tetrahedral angle δ

also defines the macroscopic order parameter (Q ∝ δ4) of the
α–β transition in quartz [8], as stated above. As a symmetry-
breaking order parameter described by Landau theory [23],
the change of the symmetry at the α–β transition introduces
microscopic order parameter (η and δ) due to a tilt angle of
SiO4 tetrahedra [2].

As there is no order in the β phase (Q = 0), the condition
for the first-order transition states that

Gα(Q) = Gβ(0) (2)

which gives

3bQ2 + 4u |Q| + 6a(T − Tc) = 0 (3)

The two roots of the quadratic equation can be solved as

Q1,2 = −2u

3b

{
1 ±

[
1 − 9ab

2u2
(T − Tc)

]1/2
}

(4)

Equation (4) gives that at T = Tc the nonzero Q solution with
the positive root square represents the α-phase (Q �= 0) with

nonzero a, u and b, whereas the solution with the negative
root square describes the β phase (Q = 0). For the first-order
α–β transition in quartz, the transition temperature (Ttr) can
be defined as the temperature where the two phases (α and
β) have the same free energy, which can also be named as
the first-order temperature [23]. Owing to the fact that there
exists nonzero order parameter (Q �= 0) at the transition
temperature (Ttr > Tc), we can assume that the square root in
the Q solution (equation 4) becomes zero, which then gives

Ttr − Tc = 2u2

9ab
(5)

This defines the difference between the transition (Ttr) and
critical (Tc) temperatures for the first-order α–β transition in
quartz. This temperature difference implies that the first-order
transition starts at the critical temperature (Tc) and ends up at
the transition temperature (Ttr) with the nonzero order param-
eter (Q). A constant value of Q can be calculated at Tc and
Ttr By inserting equation (5) into equation (4), we have

Q = −3a

u
(Ttr − Tc)

{
1 ±

[
1 − (T − Tc)

(Ttr − Tc)

]1/2
}

(6)

At the transition temperature (Ttr) and the critical temperature
(Tc), the order parameter Q becomes

Q(T =Ttr)=Q0 =−3a

u
(Ttr − Tc), Q(T =Tc) = 2Q0

(7)

Thus we find that a constant order parameter (Q0) at T = T tr

is twice as much (2Q0) at T = T c (equation 7) where the
first-order α–β transition has just started.

In equilibrium, by minimizing the Gibbs free energy
(∂G/∂Q = 0), we get from equation (1)

a(T − Tc) + u |Q| + bQ2 = 0 (8)

Equation (8) has the roots of

Q1,2 = − u

2b

{
1 ±

[
1 − 4ab

u2
(T − Tc)

]1/2
}

(9)

By inserting equation (5) into equation (9) with equation (7),
we find the temperature dependence of the order parameter
given by

Q = 3

4
Q0

{
1 +

[
1 − 8

9

(T − Tc)

(Ttr − Tc)

]1/2
}

(10)

The temperature dependence of the inverse susceptibility
(χ−1) of the order parameter Q can also be derived from
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the Gibbs free energy (equation 1) by using the definition
χ−1 = ∂2G/∂Q2 ,

χ−1 = a(T − Tc) + 2u |Q| + 3bQ3 (11)

This equation can then be used to describe the inverse sus-
ceptibility below (Q �= 0) and above (Q = 0) the critical
temperature (Tc) for the α- and β-phases, respectively, in
quartz. By considering the tilt angle (φ) due to the rotational
motion of SiO4 tetrahedral which can be related to the macro-
scopic order parameter (Q) according to

φ4 ∝ Q ∝ ω2 (12)

with the soft mode frequency (ω) for the α-phase of quartz
[2,15], the inverse susceptibility χ−1 can be expressed in
terms of the soft mode frequency as

χ−1 = a(T − Tc) + 2u∗ω2 + 3b∗ω6 (13)

where u∗ and b∗ are the renormalized second and sixth order
coefficients.

Regarding the thermal properties of α–β transition in
quartz, some other thermodynamic functions such as heat
capacity, entropy, etc. can also be derived from the Gibbs
free energy (equation 1) as given below:

Starting from the enthalpy (H) and entropy (S) associated
with the α–β transition in quartz, they can be obtained by using
the definitions H = ∂(G/T )/∂(1/T ) and S = −(∂G/∂T )P,
respectively. From the Gibbs free energy (equation 1), this
gives

H = 1

2
aTcQ

2 + 1

3
u |Q|3 + 1

4
bQ4 (14)

and

S = −1

2
aQ2 (15)

Also, at a constant pressure, the difference in the entropy at
the transition temperature (Ttr) gives the latent heat (L) by
using the definition L = �STtr as

L = −1

2
aTtrQ

2
0 (16)

where the difference in the entropy (�S) defines the order
parameter (Q0) at the transition temperature (Ttr) for the α–β

transition in quartz. By using equations (15), (16) and (10)
the entropy (S) becomes in the form of

S = 9

16

L

Ttr

{
1 +

[
1 − 8

9

(T − Tc)

(Ttr − Tc)

]1/2
}2

(17)

The excess entropy �S defines the excess heat capacity �CP.
According to the definition CP = T

(
∂S
∂T

)
P
, the heat capacity

can be obtained from the entropy (equation 17) in the form of

(
T

CP

)2

= 16 (Ttr −Tc)
2

a2Q4
0

{
1 +

[
1− 8

9

(T−Tc)

(Ttr − Tc)

]−1/2
}−2

(18)

We can also obtain the temperature dependence of the spon-
taneous strain Vs by defining

Vs = V − V0

V0
= �V

V0
(19)

where V is the lattice parameter (volume) of α-quartz and
V0 represents the reference parameter extrapolated down to
the same temperature from the stability field of β-quartz [8].
The temperature dependence of the spontaneous strain (Vs)

can then be obtained by relating it to the order parameter (Q)

according to [8]

Vs ∝ Q2 (20)

for the α–β transition in quartz. Using equation (6) we have

Vs = 9

16
Vs,0

{
1 +

[
1 − 8

9

(T − Tc)

(Ttr − Tc)

]1/2
}2

(21)

where Vs,0 represents the Vs value or the magnitude of the dis-
continuity at T = Ttr . The proportionality constant between
Vs and Q2 cancels out from both sides of equation (20) [8],
as Vs,0 ∝ Q2

0 by the definition in equations (10) and (21).
Additionally, regarding the temperature dependence of the
anomalous strain �L defined as

�L(T ) = L(T ) − LB(T ) (22)

where LB(T ) is the background elastic strain, �L can also be
related to the order parameter η according to [6]

�L ∝ 〈η2〉 (23)

3. Calculations and results

We calculated the temperature dependence of the order
parameter (Q), inverse susceptibility (χ−1), heat capacity
(CP), entropy (S) and the spontaneous strain (Vs) for the
α–β transition in quartz by using the Landau phenomenolog-
ical model with the cubic term (Q3) according to the Gibbs
free energy (equation 1). For this calculation, the expressions
derived from the Gibbs free energy were used and they were
fitted to the experimental data from literature for comparison.
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Figure 1. Normalized order parameter calculated as a function of
temperature according to equation (10) for the α–β transition in
quartz by using the Landau phenomenological model with the cubic
term (equation 1). Observed data [23,24,29] are also shown.

3.1 Calculation of the order parameter (Q)

Temperature dependence of the order parameter Q was cal-
culated according to equation (10) for the α phase in quartz,
as plotted in figure 1. The order parameter Q was normal-
ized with respect to Q0 at T = Ttr . In this figure we also
show the observed data for the order parameter η (normal-
ized) [2,23,24] and φ (normalized) [29] for the α–β transition
in quartz. The coefficients a, b and u as given in the Gibbs free
energy (equation 1), were calculated through equations (9)
and (10) as provided in table 1. The value of Q0 = 0.117 was
determined from equation (10) in the α-phase of quartz since
Q = 1 (fully ordered) at the absolute temperature (T = 0 K).

Correlation between the macroscopic order parameter (Q)

and the soft mode frequency (ω) was established according
to equation (12) for the α-phase of quartz. A linear variation
of the order parameter Q with the square of the soft mode
frequency (ω2) was obtained (equation 12) in the form of

Q/Q0 = a′ + b′ω2 (24)

with the coefficients a′ and b′. Our calculated values of Q/Q0

(equation 10) were fitted below Tc to the observed Raman data
for the soft mode with the uncertainties [29] which are asso-
ciated with the α–β transition in quartz as plotted in figure 2
and the coefficients a′ and b′ (equation 24) were determined
(table 2).

3.2 Calculation of the inverse susceptibility (χ−1)

The inverse susceptibility (χ−1) was calculated as a function
of temperature in the mean-field model (equation 1) through
equation (11) in the α (T < Tc) and β (T > Tc) phases of Ta
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Figure 2. Normalized order parameter (equation 10) as a function of the
observed Raman soft-mode frequency ω (squared) (∼100 cm−1 at 500◦C) with
the uncertainties [29] according to equation (24) in the α-phase (T < Tc) close
to the α–β transition in quartz.

Table 2. Values of the parameters a
′

and b
′

(equation 24); a0 and a1 (equation 27) for the α–β transition in quartz. Observed values of the
transition temperature (Ttr) and the critical temperature (Tc) [8].

Quartz Ttr (K) Tc (K) −a′ b′ (cm2) a0 × 105 (K4 J−2 mol2) −a1 (K3 J−2 mol2)

α–β Transition 847 840 0.5998 0.0367 1.73 200.3

quartz as plotted in figure 3. For this calculation we used the
values of the coefficients a, u and b (table 1) as we determined
for the order parameter Q (equation 9) below Tc, whereas
χ−1 = a(T − Tc) was used since Q = 0 above Tc (figure 3).
In this figure, calculated χ−1 due to the Landau mean-field
model with the even power (Q4) [8] is also plotted. Addition-
ally, inverse susceptibility χ−1 (per atom) calculated by using
molecular dynamics simulations in the case of two different
system sizes of N = 1080 and 2060 (N is the number of
atoms) [16] are shown here for comparison.

Variation of the inverse susceptibility (χ−1) with the square
of the silent soft phonon frequency (ω) was also evaluated for
the β-phase of quartz. For this calculation, according to equa-
tion (13), we used the observed data below [29] and above [30]
Tc for the frequency of the soft mode which can be associated
with the mechanism of the α–β transition in this crystalline
system. By fitting equation (13) to the observed data for the
soft mode frequency above Tc [30], we determined the values
of the renormalized coefficients u∗ and b∗ as given in table 1.
Figure 4 shows a plot of χ−1 vs.ω2 in the β-phase (T > Tc) of
quartz. We were not able to fit equation (13) to the observed
data below Tc [29] for the α-phase of quartz.

3.3 Calculation of the excess heat capacity (�CP)

Using the Gibbs free energy with the cubic term (equation 1),
the excess heat capacity CP(T ) was calculated in the form
of (T/CP)

2 (equation 18) for the α-phase (T < Tc). We plot
the heat capacity CP in the form of (T/CP)

2 as a function
of temperature in figure 5. In this figure, observed data [8]
are also plotted for the α-phase of quartz. Linear variation of
(T/CP)

2 with T was restricted to the temperature interval of
720 < T (K) < 860 with Ttr = 847 K and Tc = 840 K [8] in
the α-phase of quartz. We find from equation (18) the excess
heat capacity (�CP) as

T

�CP
= 2 (Ttr − Tc)

aQ2
0

at T = T c (25)

and

T

�CP
= (Ttr − Tc)

aQ2
0

at T = T tr (26)
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Figure 3. Normalized inverse susceptibility χ−1 calculated as a
function of temperature according to equation (11) through equa-
tion (10) below and above Tc for the α–β transition in quartz by using
the Landau phenomenological model with the cubic term (equa-
tion 1). Calculated values by using the Landau model with the fourth
power (Q4) [8] and those from the molecular dynamics simulations
[21] are also shown.

Figure 4. Variation of the inverse susceptibility (χ−1) calculated
(equation 13) with the square of the observed Raman frequency ω

(squared) of the silent soft phonon in the β-phase [29] for the α–β

transition in quartz.

From the linear variation of (T/CP)
2 with the temperature

according to

(T/CP)
2 = a0 + a1T (27)

by using the observed data [8], the coefficients a0 and a1 were
determined as given in table 2.

Figure 5. Calculated heat capacity CP in the form of (T/CP)2 as
a function of temperature according to equation (18) in the α-phase
of quartz. Observed data [8] are also shown.

Figure 6. Calculated entropy S as a function of temperature
according to equation (17) in the α-phase of quartz. Observed data
[31] are also shown.

3.4 Calculation of the excess entropy (�S)

The temperature dependence of the entropy S(T ) was also
calculated according to equation (17) for the α–β transition in
quartz as plotted in figure 6. For this calculation, equation (17)
was fitted to the observed data [31] by defining �S = Sα − Sβ

where Sα and Sβ are the entropies of the α and β phases, respec-
tively, in quartz. We used the observed data [31] for Sα and
constant Sβ at T = 850 K (table 1), then we calculated S as a
function of temperature for the α-phase of quartz (figure 6).
Observed data [31] are also shown in the figure.
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Figure 7. Spontaneous strain Vs calculated as a function of tem-
perature according to equation (21) for the α–β transition in quartz.
Vs values calculated from the neutron and X-ray data [8] are also
shown.

3.5 Calculation of the spontaneous strain (Vs)

Temperature dependence of the spontaneous strain was cal-
culated according to equation (21) for the α–β transition in
quartz as plotted in figure 7. In this figure, we also show the
calculated Vs by the Landau mean-field model with the even
powers in the order parameter (Q4) using the experimental
X-ray and neutron diffraction data [8]. Note that when the
temperature dependence of Vs as obtained from the fourth
power (Q4) mean-field model, was fitted to the neutron data
in the temperature interval of 308–341 K with Tc as the only
variable, it was found that Tc = 843.9K [8]. So, we shifted the
temperature by about �Tc = 3.9K according to the critical
temperature (Tc = 840 K) which we used in our calculation.
For the calculation of the spontaneous strain Vs (equation 21)
we first used the temperature dependence of the reference vol-
ume V0 (equation 19) as obtained previously [8] from linear
least squares fits to the combined X-ray and neutron data [8]
above Ttr according to the relation

V0 = c0 + c1T (28)

where c0 and c1 are constants (table 3). V0 value of ∼118.15 Å
was used as a reference volume at the temperature of Tc =
1138 K as the stability field of the β-quartz [8]. By using the

observed V value [8] at Ttr = 847 K (equation 19) Vs,0 value
was determined (equation 21) (table 3). The spontaneous
strain Vs was then calculated as a function of temperature
according to equation (21) for the α–β transition in quartz.

Our calculated order parameter Q (equation 10) was also
related to the strains Vs and �L at various temperatures in
theα-phase close to the α–β transition in quartz. Square of the
order parameter in the normalized form (Q/Q0)

2, which was
calculated (equation 10) is plotted in figure 8a as a function
of the spontaneous strain Vs (equation 21) for the α-phase of
quartz according to

(Q/Q0)
2 = c′

0 + c′
1Vs (29)

with constants c′
0 and c′

1 as determined (table 3). Also, by
defining the temperature dependence of the elastic strain
(equation 22), (Q/Q0)

2 is plotted as a function of �L(T )/

LB(T ) close to the α–β transition in quartz (figure 8b). In
this figure, the observed data for the elastic strain �L with
the temperature dependence of the background elastic strain
LB(T ) according to

LB(T ) = b0 + b1T (30)

where the values of the coefficients b0 and b1 [6] were used
(table 4). A nonlinear relation between (Q/Q0)

2 and �L/LB

was also obtained by using

(Q/Q0)
2 = b

′
0 + b

′
1(�L/LB) (31)

for the INC (incommensurate)-β phase transition in quartz.
The coefficients b

′
0 and b

′
1 were determined in two differ-

ent temperature regions as given in table 4. As the values
T0 = Ttr = 845.7 K and Tc = 838.7 K (T0 − Tc = 7 K)

were obtained experimentally [6], we shifted the temperature
difference (Ttr − Tc) with respect to the observed values of
Ttr = 847 K and Tc = 840 K [8] which were used in our plot
(figure 8b).

4. Discussion

Normalized order parameter (Q/Q0) calculated (equation 10)
at various temperatures, exhibits anomalous behaviour as
shown for the observed η/η0 and φ/φ0 when the transition
temperature (Ttr = 847 K) is approached (figure 1) close to
the α–β transition in quartz. Our calculated (Q/Q0) values are

Table 3. Values of the observed spontaneous strain V0 and Vs,0 (at T =Ttr) [8]; coefficients c0 and c1 (equation 28) with the observed cri-
tical temperature (Tc); and the values of the coefficients c′

0 and c′
1 (equation 29) for the α–β transition in quartz.

Quartz V0
(
Å3

)
at 1138 K c0

(
Å3

) −c1 × 10−5
(
Å3K−1

)
Tc (K) −Vs,0 × 103

(
Å3

)
c′

0 c′
1 × 10−3

α–β Transition 118.15 118.15 3.64 843.9 5.1 0 5.1
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relatively higher in magnitude with increasing slope than
those observed η/η0 [23,24] and φ/φ0 [29] data towards
Ttr (figure 1). As seen in figure 2, the macroscopic order
parameter (Q/Q0) varies linearly with the square of the

a

b

Figure 8. (a) Variation of the normalized order parameter Q
(equation 10) with the spontaneous strain (equation 21) through
equation (29) for the α–β transition in quartz. Vs values calculated
from the neutron and X-ray data [8] are also shown. (b) Variation of
the normalized order parameter Q (equation 10) with the observed
[6] elastic strain �L normalized (equation 22) through equation (31)
for the α–β transition in quartz.

Raman frequency (ω2) in the α phase (T < Tc) of quartz.
This indicates that the square of the frequency of the soft
mode can be associated with the order parameter in regard to
the mechanism of the α–β transition in quartz.

A linear decrease (T < Tc) and increase (T > Tc) was
obtained for the variation of the inverse susceptibility (χ−1)

with the temperature close to the α–β transition in quartz
(figure 3). Our calculated χ−1 according to equation (11)
which was derived from the Gibbs free energy with the cubic
term Q3 (equation 1) was compared with those calculated
from the free energy with the Q4 term [8] in the Landau phe-
nomenological model and also with those calculated by the
molecular dynamics simulation for two different system sizes
(N = 1080 and 2060) [21]. Our calculated χ−1 shows similar
critical behaviour (below and above Tc) with relatively higher
values above Tc as compared with those calculated, whereas
below Tc, χ−1 calculated with the Q3 (equation 11) matches
with those values due to the Q4 term [8].

We also examined the variation of the inverse suscepti-
bility (χ−1) with the square of the Raman frequency (ω2)

for the soft mode (∼100 cm−1 at 500◦C) above Tc [30]
according to equation (13) as stated above (figure 4). A lin-
ear variation of χ−1 was obtained with the ω2 above Tc as
expected within the temperature interval studied close to the
α–β transition in quartz. A nonlinear variation which occurs
can be attributed to the cubic term in ω2 (or the third term)
in equation (13). However, its contribution to the χ−1 is
almost insignificant so that the χ−1 essentially varies lin-
early with the ω2 of the soft mode accompanied with the
mechanism of the α–β transition in quartz. This also indi-
cates that the square of the soft mode frequency (ω2) can
be considered as an order parameter (equation 12) and the
Gibbs free energy (equation 1) can be expanded in terms of
the ω2 as the macroscopic order parameter Q from which the
χ−1 can be obtained (equation 13) for the α–β transition in
quartz.

Regarding the temperature dependence of the excess heat
capacity �CP, a linear variation of (T/CP)

2 with the tem-
perature was obtained within the temperature interval of
720 < T (K) < 860 (figure 5) as stated above whereas for a
much wider range of temperature well belowTc in theα-phase,
(T/CP)

2 varies nonlinearly with the temperature according
to equation (18). This linear variation of (T/CP)

2 with T
which we obtained from the Gibbs free energy with the cubic
Q3 term (equation 1), is close to that obtained from the free

Table 4. Values of the coefficients b0 and b1 (equation 30); b′
0 and b′

1 (equation 31) within the temperature intervals indicated with the
observed transition temperature T0 for the elastic strain �L [6] close to the INC–β transition in quartz.

Quartz T0 (K) b0 (cm) b1 × 10−5
(
cm K−1

)
Temperature interval (K) −b′

0 b′
1 Temperature interval (K)

INC–β transition 845.7 1.00834 1.5386 842.23 < T < 846.7 6.002 7.185 801.1 < T < 826.8
1.803 4.002 831.9 < T < 846.2
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energy with the Q4 term, according to

(T/CP)
2 = 1.47 × 105 − 173.0T (32)

within the temperature interval we studied, as compared to
equation (27) with the values of a0 and a1 (table 2). Thus, we
conclude that the similar critical behaviour is obtained within
almost the same temperature interval for both the tempera-
ture dependence of the linear (T/CP)

2 (equation 27 through
equation 18) as derived from the Gibbs free energy with the
cubic Q3 term and with the Q4 term (equation 32) [8] in the
Landau phenomenological model. Similarly, we can inter-
pret the behaviour of the entropy (S) increasing with increase
in temperature which agrees with the experimental data [31]
as obtained for the α-phase according to equation (17), as
shown in figure 6. This indicates that motions of the near-
estneighbour SiO4 tetrahedra are highly correlated with the
large nearest-neighbour coupling constant. In the temperature
interval studied, this increase is nearly linear as the variation
of (T/CP)

2 with T (decreasing) and we expect that well above
Tc the entropy saturates in the stabilized β-phase.

The spontaneous strain (Vs) exhibits anomalous behaviour,
which increases with increase in temperature in the α-phase
towards the transition temperature (Ttr) whereas it stabilizes
in the β-phase as we calculated (equation 21) using the Landau
phenomenological model as plotted in figure 7. The Vs calcu-
lated (equation 21) from the Gibbs free energy with the cubic
Q3 term (equation 1) agrees with the similar plot which was
obtained by calculating Vs from the free energy with the Q4

term on the basis of the observed neutron and X-ray data for
the volume V [8], as also plotted in figure 7. In relation to the
macroscopic order parameter an almost linear correlation was
obtained between (Q/Q0)

2 and Vs (figure 8a). Values of the
slope (c′

1) and intercept (c′
0) for the (Q/Q0)

2 vs. Vs graph were
determined according to equation (29) within the temperature
intervals of 793.9 < T (K) < 845.9 in the α-phase of quartz.
On the contrary (Q/Q0)

2 varied nonlinearly with the normal-
ized elastic strain �L/LB (figure 8b) for the α–β transition
in quartz. Linear variations of (Q/Q0)

2 with �L/LB were
obtained in the two different temperature regions (figure 8b)
with the values of slopes (b

′
1) and intercepts (b

′
0) according

to equation (31) (table 4).
Regarding the tilt angle (φ), anomalous behaviour of the

macroscopic order parameter Q was directly related to the tilt
angle (φ) due to the rotational motion of SiO4 tetrahedral in

Figure 9. Tilt angleφ as a function of macroscopic order parameter
Q according to equation (33) in the α phase close to the α–β transition
in quartz. Observed data [23,32] are also shown.

quartz previously [8] according to the quadratic equation

φ = AQ + BQ2 (33)

where A and B are constants. We also fitted those values of φ

extracted from structure refinements [32] and data of Young
in [23] to our calculated Q (equation 10) values according to
equation (33), as plotted in figure 9 and we determined the
coefficients A and B (table 5). We find a linear variation of
φ with Q (equation 33), which indicates that the measured
tilt angle (φ) can also be considered as the macroscopic order
parameter (Q).

It has been pointed out that at the macroscopic level the
order parameter η is associated with the new physical prop-
erties appearing in the α phase such as piezoelectric constant,
elastic constant, etc. [24], as we have also studied previously
[13]. Close to the transition, nonlinear variations are observed
for several physical properties as the elastic constants due to
thermal fluctuations [24]. At high temperatures in the β phase
(Q = 0), many thermodynamic quantities have smaller lin-
ear variations whereas near the transition temperature due
to nonlinear variations of the thermodynamic quantities as
observed experimentally, our calculations from the Landau
mean-field model agree with the experimental results in a

Table 5. Values of the coefficients A and B (equation 33) within the temperature interval indicated for the α–β transition in quartz.
Observed values of the transition temperature (Ttr) and the critical temperature (Tc) [8].

Quartz Ttr (K) Tc (K) A (◦) −B (◦) Temperature interval (K)

α–β Transition 847 840 22.009 4.058 273 < T < 823
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limited range. So, the mean-field theory we used here to cal-
culate mainly the macroscopic order parameter, heat capacity
and entropy is restricted to, as compared to the observed data,
the temperature interval close to the α–β transition in quartz.
As seen from figure 1, the macroscopic order parameter (Q)

calculated (equation 10) agrees with the experimental data
[23,24,29] within the temperature interval of about 830 to
847 K [23,24] nearly 7 K close to the transition temperature
(Ttr) and from 845 to 850 K [29] for the α–β transition in
quartz. The temperature interval where the mean-field theory
holds is 720 < T (K) < 850 for the heat capacity as stated
above in the form of (T/CP)

2 calculated as a function of tem-
perature according to equation (18) through equation (27),
which agrees with the observed data [8] as given in figure 5.
However calculated entropy S (equation 17) seems to agree
with the experimental data [31] in a very short temperature
interval (most likely in a couple of degrees) close to the tran-
sition temperature (Ttr = 847 K), as plotted in figure 6. As
the temperature decreases (away from the Ttr), calculated S is
diverted significantly from the observed data [31] (figure 6).
This indicates that the mean-field theory for the entropy S
is valid in the vicinity of the transition temperature (Ttr) as
approached from the α phase. Also, it has been stated that
the INC phase can occur when the order parameter cou-
ples with the degrees of freedom such as acoustic phonons
[28,33]. Regarding the coupling between the strain and the
order parameter, energy is stabilized for the α-quartz and it
is responsible for the first-order transition [1]. A large spon-
taneous strain generated due to the coupling of the phonon
coordinates and the lattice distortion causes the α–β transition
[29]. In this study, we have not considered coupling between
the macroscopic order parameter (Q) and phonons associated
with the α–β transition in quartz. Also, we have not consid-
ered coupling between strain (Vs) and the order parameter
(Q) for the first-order transition. Without any coupling terms
in the free energy (equation 1) of the Landau phenomeno-
logical model, we were able to explain the thermodynamic
properties of quartz close to the first-order α–β transition, as
we studied here. Undoubtedly, coupling terms can be added
to the free energy (equation 1) to investigate some changes
if any for the first-order α–β transition in quartz by using
the Landau phenomenological model which we introduced
here.

5. Conclusions

The mean-field model with the cubic term (Q3) expanded in
the free energy was used to describe the first-order α–β tran-
sition in quartz. Thermodynamic quantities were calculated
from the free energy by using the observed data for the excess
heat capacity (�CP) from the literature for the α–β transition
in quartz.

Our calculations show that the Landau mean-field model is
satisfactory to describe the first-order α–β transition in quartz.

This also indicates that the mean-field model can be applied
to some other crystalline systems to describe their thermal
properties close to the phase transitions.
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